

WEEKLY TEST MEDICAL PLUS -03 TEST - 07 RAJPUR **SOLUTION Date 01-09-2019**

[PHYSICS]

1.
$$H = \frac{v^2 \sin^2 \theta}{2g} \text{ and } R = \frac{v^2 \sin^2 2\theta}{g}$$

Since, R = 2H, so
$$\frac{v^2 \sin 2\theta}{g} = 2 \times \frac{v^2 \sin^2 \theta}{2g}$$

or $2\sin\theta\cos\theta = \sin^2\theta$ or or $\tan\theta = 2$

$$\therefore R = v^2 \times \frac{2}{g} \times \sin\theta \cos\theta$$

$$=\frac{2v^2}{g}\times\frac{2}{\sqrt{5}}\times\frac{1}{\sqrt{5}}=\frac{4v^2}{5g}$$

2. For the preson to be able to catch the ball, the horizontal component of velocity of the ball should be same as the speed of the person, i.e.,

$$v_0 \cos \theta = \frac{v_0}{2}$$

or
$$\cos \theta = \frac{1}{2}$$
 or $\theta = 60^{\circ}$

3. Let,
$$u_x = 3 \text{ m/s}$$
, $a_x = 0$

$$u_y = 0$$
, $a_y = 1 \text{ m/sec}^2$ and $t = 4 \text{ sec}$
If v_x and v_y be the velocities after 4 sec respectively, then
$$v_x = u_x + a_x t = 3 \text{ ms}^{-1}$$
and $v_y = u_y + a_y t = 0 + 1 \times 4 = 4 \text{ ms}^{-1}$

$$v_x = u_x + a_x t = 3 \text{ ms}^{-1}$$

and
$$v_y = u_y + a_y t = 0 + 1 \times 4 = 4 \text{ ms}^{-1}$$

$$\therefore \qquad v = \sqrt{v_x^2 + v_y^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \text{ m/s}$$

Angle made by the result velocity w.r.t. direction of initial velocities, i.e., x-axis, is

$$\beta = tan^{-1} \frac{v_y}{v_x} = tan^1 \left(\frac{4}{3}\right)$$

4.
$$h = \frac{u^2 \sin^2 \theta}{2g}, \text{ hence, } \frac{\Delta h}{h} = 2. \frac{\Delta u}{u}$$

Since,
$$\frac{\Delta u}{u} = 2\%$$
, hence, $\frac{\Delta h}{h} = 4\%$

$$R_{\text{max.}} = R = \frac{u^2}{g}$$

or
$$u^2 = Rg$$

Now, as range =
$$\frac{u^2 \sin 2\theta}{g}$$

then,
$$\frac{R}{2} = \frac{Rg \sin 2\theta}{g}$$

or
$$\sin 2\theta = \frac{1}{2} = \sin 30^\circ$$

or
$$\theta = 15^{\circ}$$

6. The horizontal range is the same for the angles of projection
$$\theta$$
 and $(90^{\circ} - \theta)$

$$t_{_{1}}=\frac{2u\sin\theta}{g}$$

$$t_2 = \frac{2u \sin(90^o - \theta)}{g} = \frac{2u \cos \theta}{g}$$

$$\therefore \quad t_1 t_2 = \frac{2u \sin \theta}{g} \times \frac{2u \cos \theta}{g} = \frac{2}{g} \left[\frac{u^2 \sin 2\theta}{g} \right] = \frac{2}{g} R$$

where
$$R = \frac{u^2 \sin 2\theta}{g}$$

Hence,
$$t_1 t_1 \propto R$$
.
7. Range = 150 = ut and

$$h = \frac{15}{100} = \frac{1}{2} \times gt^2$$

or
$$t^2 = \frac{2 \times 15}{100 \times g} = \frac{30}{1000}$$

or
$$t = \frac{\sqrt{3}}{10}$$

$$\therefore u = \frac{150}{t} = \frac{150 \times 10}{\sqrt{3}} = 500\sqrt{3} \text{ ms}^{-1}$$

8.
$$y = 12x - \frac{3}{4}x^2$$

$$\frac{dy}{dt} = 12\frac{dx}{dt} - \frac{3}{2}x\frac{dx}{dt}$$

At
$$x = 0$$
: $\frac{dy}{dt} = 12 \frac{dx}{dt}$

If θ be the angle of projection, then

$$\frac{dy / dt}{dx / dt} = 12 = \tan \theta$$

Also, if $u = initial \ velocity$, then $ucos\theta = 3$ Hence, $tan\theta \times ucos\theta = 36$ or $u sin\theta = 36$

Range,
$$R = \frac{u^2 \sin 2\theta}{g} = \frac{2u^2 \sin \theta \cos \theta}{g}$$

$$=\frac{2(u\sin\theta)(u\cos\theta)}{10}=\frac{2\times36\times3}{10}=21.6~\text{m}$$

9. If the ball hits the nth step, the horizontal distance traversed = nb.

Vertical distance traversed = nh.

Here, velocity along horizontal direction = u.

Velocity along vertical direction = 0.

$$nh = 0 + \frac{1}{2}gt^2$$

From eqn. (i),

$$t = \frac{nb}{u}$$

$$t = \frac{nb}{u}$$
, \therefore $nh = \frac{1}{2}g \times \left(\frac{nb}{u}\right)^2$

$$\therefore \quad n = \frac{2hu^2}{gb^2}$$

Potential energies at the highest point are equal to the loss in kinetic energies. That is $\frac{1}{2}$ mu² and 10.

$$\frac{1}{2}$$
m(ucos 60°)² or $\frac{1}{4} \times \frac{1}{2}$ mu².

11.
$$t = \frac{2u\sin\theta}{q} = \frac{2 \times 20 \times \sin 30^{\circ}}{10} = 2 \text{ s}$$

Now, we shall calculate the total time taken by the ball to hit the ground.

Using,
$$s = ut + \frac{1}{2}gt^2$$
,

we get;
$$40 = -10t' + \frac{1}{2} \times 10(t')^2$$

$$[\cdot \cdot \cdot u = -20 \sin 30^{\circ} = -10 \text{ m/s}]$$

$$5(t') - 10t' - 40 = 0$$

Solving, we have, t' = 4 s

$$\therefore \quad \frac{t'}{t} = \frac{4s}{2s} = \frac{2}{1}$$

12.
$$H_{max.} = \frac{u^2 \sin^2 \theta}{2g}$$

$$T = \frac{2u\sin\theta}{q}$$

$$\frac{H_{\text{max.}}}{T^2} = \frac{u^2 \sin^2 \theta}{2g} \times \frac{g^2}{4u^2 \sin^2 \theta} = \frac{g}{8} = \frac{10}{8} = \frac{5}{4}$$

13.

14.
$$H = \frac{u^2 \sin^2 \theta}{2g} \text{ or } 80 = \frac{u^2 \sin^2 \theta}{2 \times 10}$$

or
$$u^2 \sin\theta = 1600$$

or
$$u\sin\theta = 40 \text{ ms}^{-1}$$
.

Horizontal velocity = $u \cos\theta = at$

$$= 3 \times 30 = 90 \text{ ms}^{-1}$$

$$\frac{u\sin\theta}{u\cos\theta} = \frac{40}{90}$$

or
$$\tan \theta = \frac{4}{9}$$
 or $\theta = \tan^{-1} \left(\frac{4}{9}\right)$

15.
$$h = (u \sin \theta)t - \frac{1}{2}gt^2$$
$$d = (u \cos \theta)t$$

or
$$t = \frac{d}{u \cos \theta}$$

$$\therefore \quad h = u \sin \theta. \frac{d}{u \cos \theta} - \frac{1}{2} g. \frac{d^2}{u^2 \cos^2 \theta}$$

$$\therefore \quad u = \frac{d}{\cos \theta} \sqrt{\frac{g}{2(d \tan \theta - h)}}$$

16. Average velocity =
$$\frac{\text{Displacement}}{\text{Time}}$$

$$v_{\text{av.}} = \frac{\sqrt{H^2 + \frac{R^2}{4}}}{T/2}$$

.....(i)

Here, H = maximum height

$$=\frac{v^2\sin^2\theta}{2g}$$

$$R = range = \frac{v^2 \sin 2\theta}{\sigma}$$

and T = time of flight =
$$\frac{2v \sin \theta}{g}$$

$$\therefore \quad v_{av.} = \frac{v}{2} \sqrt{1 + 3\cos^2 \theta}$$

17.
$$T = \frac{2u_y}{q}, \qquad H = \frac{u_y^2}{2a}$$

and $R = u_{\nu}T$

When a horizontal acceleration is also given to the projectile u_y and T and H will remain unchanged while the range will become

$$R' = u_x T + \frac{1}{2} a T^2$$

$$=R+rac{1}{2}rac{g}{4}igg(rac{4u_{y}^{2}}{g^{2}}igg)=R+H$$

18.
$$t_{AB} = \text{time of flight of projectile} = \frac{2u\sin(\alpha - 30^{\circ})}{g\cos 30^{\circ}}$$

Now component of velocity along the plane becomes zero at point B.

$$\therefore \quad 0 = u \cos(\alpha - 30^{\circ}) - g \sin 30^{\circ} \times T$$

or
$$u\cos(\alpha-30^\circ)$$

$$= g \sin 30^{\circ} \times \frac{2u \sin(\alpha - 30^{\circ})}{g \cos 30^{\circ}}$$

or
$$\tan(\alpha - 30^{\circ}) = \frac{\cot 30^{\circ}}{2} = \frac{\sqrt{3}}{2}$$

$$\therefore \quad \alpha = 30^{\circ} + tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$$

19. Horizontal component of velocity,

$$u_H = u\cos 60^\circ = \frac{u}{2}$$

$$\therefore$$
 AC = $u_H \times t = \frac{ut}{2}$

and AB = AC sec 30°

$$= \left(\frac{ut}{2}\right) \left(\frac{2}{\sqrt{3}}\right) = ut/\sqrt{3}$$

20. For the projectile to pass through (30 m, 40 m)

$$=40=30\tan\alpha-\frac{g(30)^2}{2u^2}(1+\tan^2\alpha)$$

or $900\tan^2\alpha - 6u^2\tan\alpha + (900 + 8u^2) = 0$

For real value of α ,

$$(6u^2)^2 \ge 3600 (900 + 8u^2)$$

$$r (u^4 - 800u^2) \ge 900,00$$

or
$$(u^2 - 400)^2 \ge 25,000$$

or
$$u^2 \ge 900$$

or
$$u \ge 30$$
 m/s.

21. Let P be the position of projectile when it is moving with velocity u at an angle to the horizon and Q the position when the direction of path makes an angle β with horizontal.

Take P as origin and horizontal and vertical lines through it as axes.

Suppose time from P to Q is t, then v is the velocity at Q.

hence
$$v = \cos \beta = u \cos \alpha$$

$$v \sin \beta = u \sin \alpha - \sin \alpha - gt$$

$$\tan \beta = \frac{u \sin \alpha - gt}{u \cos \alpha}$$

$$t = \frac{u\cos\alpha(\tan\alpha - \tan\beta)}{2}$$

....(iii)

If in the position Q, the angle turned through be θ , then $\alpha - \beta = \theta$

or
$$\beta = \alpha - \theta$$

From eqn. (iii),
$$t = \frac{u \cos \alpha}{g} [\tan g a - \tan(\alpha - \theta)]$$

$$=\frac{u\cos\alpha}{g}\Bigg[\frac{\sin\alpha}{\cos\alpha}-\frac{\sin(\alpha-\theta)}{\cos(\alpha-\theta)}\Bigg]$$

$$= \frac{\mathsf{u} \cos \alpha}{\mathsf{g}} \frac{\mathsf{sin} \, \theta}{\mathsf{cos} \, \alpha \, \mathsf{cos} (\alpha - \theta)}$$

$$=\frac{\mathsf{u} \sin \theta}{\mathsf{g} \cos(\theta - \alpha)}$$

22. $100 = (V_t - V_m)10, V_t = 15 \text{ m/s}$

In second case : $100 = (V_t + V_m)t$ From 1st equation : $V_m = 5 \text{ m/s}$

From 2nd equation : t = 5 sec

23.

24. Time taken by body A, $t_1 = 5$ sec

Acceleration of body A = a

Time taken by body B, $t_2 = 5 - 2 = 3 \text{ sec}$

Acceleration of body $B = a_3$

Distance covered by first body in 5th second after start,

$$s_5 = u + \frac{a_1}{2}(2t_1 - 1)$$

$$=0+\frac{a_1}{2}(2\times 5-1)=\frac{9a_1}{2}$$

Distance covered by the second body in the 3rd second after is start,

$$s_3 = u + \frac{a_2}{2}(2t_2 - 1)$$

$$=0+\frac{a_2}{2}(2\times 3-1)=\frac{5a_2}{2}$$

Since, $s_5 = s_3$

$$\therefore \frac{9a_1}{2} = \frac{5a_2}{2}$$
 or $a_1 : a_2 = 5 : 9$

$$\frac{P}{V} > \frac{Q}{V_0} > V_P - V_Q = 2.4 \text{ m/s}$$

$$\stackrel{P}{\longrightarrow} \stackrel{Q}{\longleftarrow} v_p + v_Q = 6.0 \text{ m/s}$$

$$\therefore$$
 $v_p = 4.2 \text{ m/s}; v_Q = 1.8 \text{ m/s}$
For the motion of first ball,

$$u = 0$$
, $a = g$, $t = 3s$.

Let S₁ be the distance covered by the first ball in 3 sec.

$$\therefore S_1 = ut + \frac{1}{2}gt^2 = 0 + \frac{1}{2} \times 10 \times (3)^2 = 45 \text{ m}$$

Let S_{2} be the distance covered by the second ball in 2 sec. Then

$$S_2 = 0 + \frac{1}{2} \times 10 \times (2)^2 = 20 \text{ m}$$

:. Separation between the two balls

$$= S_1 - S_2 = 45 - 20 = 25 \text{ m}.$$

27. 28.

25.

Given: At time t = 0, velocity, v = 0.

Acceleration,
$$f = f_0 \left(1 - \frac{t}{T} \right)$$

At f = 0,
$$0 = f_0 \left(1 - \frac{t}{T} \right)$$

Since, f_0 is a constant, $\therefore 1 - \frac{t}{T} = 0$ or t = T

Also, acceleration, $f = \frac{dv}{dt}$

$$\therefore \quad \int_0^{v_x} dv = \int_{t=0}^{t=T} f dt = \int_0^T f_0 \left(1 - \frac{t}{T} \right) dt$$

$$v_{x} = \left[f_{0}t - \frac{f_{0}t^{2}}{2T} \right]_{0}^{T} = f_{0}T - \frac{f_{0}T}{2T} = \frac{1}{2}f_{0}T$$

29.
$$S_2 = \frac{1}{2}gt_2^2 = \frac{10}{2} \times (3)^2 = 45 \text{ m}$$

$$S_1 = \frac{1}{2}gt_1^2 = \frac{10}{2} \times (5)^2 = 125 \text{ m}$$

$$\therefore$$
 S - S = 125 - 45 = 80 m

30.
$$S = ut + \frac{1}{2}gt^2$$

$$30 = -25t + \frac{10}{2}t^2 \quad \text{ or } \quad t^2 - 5t - 6 = 0$$

or
$$(t-6)(t+1)=0$$

Starting from rest
$$x_1 = \frac{1}{2} a (10)^2$$
(1)

$$x_1 + x_2 = \frac{1}{2} a(20)^2$$
(2)

$$x_1 + x_2 + x_3 = \frac{1}{2}a(30)^2$$
(3)

From (2) – (1)
$$x_2 = \frac{1}{2}$$
 a (300)

From (3) – (2)
$$x_3 = \frac{1}{2}$$
 a (500)
 $\Rightarrow x_1 : x_2 : x_3 : : 1 : 3 : 5$

33.
$$s = \frac{(u+v)}{2}t$$

$$3 = \frac{(v_T + v_B)}{2} \times 0.5$$

$$v_T + v_B = 12 \text{ m/s}$$
Also, $v_B = v_T + (9.8)(0.5)....(2)$

$$v_B - v_T = 4.9 \text{ m/s}$$

Initial distance between trains is 300 m. Displacement of 1st train is calculated by area under V-t. curve of train 1 = $\frac{1}{2}$ × 10 × 40 = 200 m.

Displacement of train $2 = \frac{1}{2} \times 8 \times (-20) = -80 \text{ m}.$

Which means it moves towards left.
∴ Distance between the two is 20 m.

35. Let a be the retardation produced by resistive force, t_a and t_d be the time of ascent and descent respectively. If the particle rises upto a height h

then
$$h = \frac{1}{2} (g + a) t_a^2$$
 and $h = \frac{1}{2} (g - a) t_d^2$

$$\therefore \frac{t_a}{t_d} = \sqrt{\frac{g-a}{g+a}} = \sqrt{\frac{10-2}{10+2}} = \sqrt{\frac{2}{3}}$$
 Ans. $\sqrt{\frac{2}{3}}$

36. The linear relationship between V and x is V = -mx + C where m and C are positive constants.

:. Acceleration

$$a = V \frac{dV}{dx} = -m(-mx + C)$$

$$\therefore \qquad a = m^2 x - mC$$

Hence the graph relating a to x is:

37. From triangle BCO \Rightarrow BC = 4

From triangle BCA \Rightarrow AC = $\sqrt{2^2 + 4^2} = 2\sqrt{5}$ AC = u_1 t, BC = u_2 t

38. After 10 sec

$$\frac{u_{B}}{A} = 2 \times 10 = 20$$

$$A = \frac{1}{2} \times a \times 10^{2}$$

$$= 100$$
Now $x_{A} = (40 \text{ t})$

$$x_B = 100 + (ut) + \frac{1}{2}(2) t^2 = 100 + 20 t + t^2$$

A will be ahead of B when

which is not possible

39. From given graphs: a_x is +ve & a_y is -ve, as v_x is increasing in +ve direction and v_y in -ve direction. (Checked from slope)

Distance travelled from time 't-1' sec to 't' sec is

$$S = u + \frac{a}{2} (2t - 1)$$
(1)

from given condition $S = t \dots (2)$

(1) & (2)
$$\Rightarrow$$
 t = u + $\frac{a}{2}$ (2t - 1) \Rightarrow u = $\frac{a}{2}$ + t (1 - a).

Since u and a are arbitrary constants, and they must be constant for every time.

⇒ coefficient of t must be equal to zero.

$$\Rightarrow$$
 1 – a = 0 \Rightarrow a = 1 for a = 1, u = $\frac{1}{2}$ unit

Initial speed is $\frac{1}{2}$ unit. Ans.

41. Height of the building

$$H = h_1 + h_2$$

$$= \frac{1}{2}gt^2 + ut - \frac{1}{2}gt^2$$

42.
$$\vec{r} = (t^2 - 4t + 6)\hat{i} + t^2\hat{j}$$
; $\vec{v} = \frac{d\vec{r}}{dt} = (2t - 4)\hat{i} + 2t\hat{j}$, $\vec{a} = \frac{d\vec{v}}{dt} = 2\hat{i} + 2\hat{j}$

if \vec{a} and \vec{v} are perpendicular

$$\vec{a} \cdot \vec{v} = 0$$
 $(2\hat{i} + 2\hat{j}) \cdot ((2t - 4)\hat{i} + 2t\hat{i}) = 0 \quad 8t - 8 = 0$

$$t = 1 sec.$$

$$-h = x \tan (0^\circ) - \frac{gx^2}{2(2gh)(\cos^2 0^\circ)}$$

$$\Rightarrow$$
 x = 2h

Method II

time of flight T =
$$\sqrt{\frac{2h}{g}}$$

horizontal distance covered during time of flight is

$$x = u_x t = \sqrt{\frac{2h}{g}} \times \sqrt{2hg} = 2h$$

$$\therefore \text{ Required angle} = \frac{\pi}{2} - \frac{5\pi}{36} = \frac{13\pi}{36} \text{ Ans.}$$

45. Use
$$\alpha = \beta = 45^{\circ}$$
 in the formula for Range down the incline plane.